
September 5, 1997

10($������	�WKH�&RQWUROOHU�$UHD�1HWZRUN��&$1�

)UDQN�&DVVLG\��&KDLUPDQ�10($�6WDQGDUGV�&RPPLWWHH

3UHYLHZ�
$Q�,QWURGXFWLRQ�WR�10($����� in the May/June 1997 issue of Marine Electronics
provided an overview of the network and describes NMEA 2000 as containing “…the
requirements for the implementation of a serial-data communications network to
interconnect marine electronic equipment onboard vessels. The network operates in a
Carrier Sense/Multiple Access/Collision Arbitration mode, is multi-master and self-
configuring, there is no central network controller.”

To provide structure to the development of the NMEA 2000 standard it is being defined
in layers according to the International Standards Organization Open Systems
Interconnect (ISO/OSI) model. Of the seven layers defined by the model, the NMEA
2000 standard will specify the following:

• /D\HU�����7KH�3K\VLFDO�/D\HU - For the electrical and mechanical definitions
of the network

• /D\HU�����'DWD�/LQN�/D\HU, with Media Access Control (MAC) and Logical
Link Control (LLC) sub-layers - For network access protocol, timing, error
detection, and network management

• /D\HU�����7KH�1HWZRUN�/D\HU - For interconnecting multiple network
segments

• /D\HU�����7KH�$SSOLFDWLRQ�/D\HU - For the actual definition of the data
transmitted on the network

This series of articles in Marine Electronics will provide an increasing level of detail
about the NMEA 2000 standard. Because it is fundamental to the operation of the
network and impacts all of the other layers, this second article will describe the Controller
Area Network (CAN), the basis for the Media Access Control portion of the Data Link
Layer. It is not possible to define any of the other layers until the power that is provided
by CAN is understood, so let’s start there.

0XOWL�0DVWHU
NMEA 2000 is a multi-master serial data network wired as a bus, with all inputs and
outputs of all devices connected together.

What does multi-master mean? What we really want for NMEA 2000 is a network
architecture that is not dependent on a central network controller. How do we get this on

a single channel with all devices connected together? To get this we have to distribute
the control equally among all of the network devices.

This means that each device must be programmed with a set of rules, or protocol, that
will: allow each device its fair share of network bandwidth for sending its messages,
allow it to identify and acknowledge messages, provide the capability to detect errors and
retransmit data or shut down automatically if necessary. By rigidly following this set of
rules each device is its own master of the network and is only dependent on the other
devices to follow the same rules.

7KH�&$1�6ROXWLRQ
In the mid-eighties Robert Bosch GmbH and Intel collaborated on the specification and
development of integrated circuits (IC) for a device that would provide a serial
communications protocol to support distributed real-time control applications. The
objective was to provide a robust solution for automotive applications that include high-
speed networking as well low-cost wire multiplexing. CAN was originally intended for
real-time engine and transmission control, anti-skid breaking systems, and to replace the
wiring of body components.

The current CAN specification is Version 2.0 (1991, Robert Bosch GmbH) and is an open
document and freely available on the Internet, it is also documented in ISO-11898.

While automotive application dominate, and have the potential to drive prices down with
high production volumes, CAN has exploded into other applications in all areas of
industrial control. CAN is supported by virtually every major integrated circuit
manufacturer and devices are available as standalone CAN controllers, and embedded
with microcontrollers such as the 8051, 68HC05, and 87C196 families. Manufacturers
that include CAN in their standard product line include:

• Hitachi
• Intel
• Mitsubishi
• Motorola
• National Semiconductor
• NEC
• Phillips-Signetics
• SGS-Thompson
• Siemens
• Texas Instruments

The utility of CAN, and the power it adds to a microcontroller-based system, may in
some way be thought of as analogous to the standard Universal Asynchronous
Receiver/Transmitter (UART), and it may soon be as commonplace.

:KDW�LV�&$1"
CAN is a serial communications protocol with high data security implemented by
standard integrated circuits from numerous suppliers. It provides a transfer protocol for
serial communications that includes all bit timing, frame formatting, message
identification, data transmission, acknowledgement, and error checking.

The serial data frame used by CAN has an identification field and from zero to eight data
bytes. In addition, as shown below, the frame contains start of frame and end of frame
bits, frame control bits, error detection fields, acknowledgement bits, plus a number of
fixed format and reserved bits. All device on the bus are synchronized by the leading
edge of the frame start and are resynchronized by the edges of the data bits in the frame.
In CAN it is required that all devices sample the same bit in the frame at the same time.

 Identification field Data field CRC field End

 Start of frame Control field ACK field

CAN defines four types of frames:
• Data Frame, used to transmit data
• Remote Frame, used to request data
• Error Frame, transmitted when errors are detected
• Overload Frame, transmitted to delay additional Data or Remote frames

The frame type is indicated by the settings of certain bits in the frame and each frame is
used for specific purposes as implied above. Error frames and Overload frames are
transmitted automatically by CAN when conditions warrant, but the use and content of
Data and Remote frames is under the control of the designer.

The format of the CAN frame is rigidly defined, and except for the way certain fields are
used, the ability to vary the length of the data field, and to program the bit rate (practical
bit rates are within the range of 5 Kbps to 1 Mbps), there is no freedom for modification.

A notable exception to this statement is that CAN is available in two formats. The
Standard Format (Part A of the CAN specification) utilizes an 11-bit Identification field,
and the Extended Format (Part B) extends the 11-bits with 18 additional bits for a total
Identification field length of 29 bits. Control bits are used to indicate which format is
being transmitted such that it is possible for both formats to be used on the same bus
without serious interference. NMEA 2000 is defined using only the 29-bit identifier, but
with some limitations, non-NMEA 2000 frames with 11-bit identifiers may exist on the
same network.

So much for the mechanics of CAN, the real utility of CAN is described in the next
section.

&$1�)HDWXUHV
CAN produces the bit pattern of the serial data as described above, this is necessary, but
is also the easy part. The real utility of CAN is contained in the powerful suite of features
that manage the communications on the bus. CAN automatically handles the entire data
transfer function through the following steps:

• Bus access
• Priority-based bus contention resolution
• Data transmission
• Error detection
• Automatic re-transmission of failed messages
• Message delivery acknowledgement
• Automatic shutdown of failed nodes

Like Ethernet, CAN operates in the Carrier-Sense/Multiple Access mode. What this
means is that when there is a frame to be sent CAN listens on the bus (carrier-sense), and
if the bus is not busy data transmission may proceed. It is multiple access because if
every device follows the rules there can be many devices sharing the same bus. The
difference between CAN and the Ethernet approach occurs when two devices
simultaneously determine that the bus is not busy, and both start to transmit. This leads
to bus contention. With Ethernet there is a data collision and both devices stop
transmitting and try again later, valuable time on the bus is lost during the collision and
the net bandwidth is reduced. CAN handles bus contention in a way that prevents loss of
bus bandwidth. When bus contention occurs CAN arbitrates bus access on a bit-by-bit
basis, the device with the highest priority prevails and continues to transmit data, the
device with lower priority tries again later.

To support bus arbitration CAN requires that the physical layer of the network transmit
bits that are either Dominant (Logic “0” as it turns out) or Recessive (Logic “1”). Simply,
this means that the bus connections operate as Wire-AND circuits where a single device
transmitting a “0” will dominate over all other devices transmitting “1”s. CAN performs
this bit-by-bit arbitration using only the bits in the Identification field; this means that the
network design must require the Identification field be unique for each frame, and that the
importance, or priority, of the message be implied by the numerical value of the
Identification field.

'DWD�'HOLYHU\
The “useable” portions of the CAN frame are the Identification and Data fields, all of the
other bits have special purposes (e.g., error detection, acknowledgement) and are not
available to the designer. While it is called an “identification” field, “arbitration” field
might have been a better name. These 29 bits (11-bits for the Standard format) could be
used to transmit data, and for that matter some of the “data” bits could be used to
“identify” the data or the transmitting node. The point is that CAN specifies the field
format rigidly, but there is considerable flexibility in how these fields are used.

However the bits are utilized, within a CAN frame there is a limited number of bits for
transferring data (8-bytes if we stick to the defined Data fields, and only a few more if we
steal some of the Identification field bits). There will certainly be data that exceeds the
limits of a single CAN frame. The actual use of these fields, and provisions for sending
multi-frame messages, are tasks performed by the other part of the Data Link Layer, the
Logical Link Control (LLC) sub-layer, and will be covered in a future article.

(UURU�GHWHFWLRQ�	�&RQILQHPHQW
The powerful error detection techniques provided by CAN offer a data delivery capability
with less than one chance in 20 billion that an error will not be detected. All nodes
perform error detection and any node detecting an error generates an Error frame, Error
frames may interrupt Data frames. Once an error is flagged the transmission is aborted
and the data retransmitted automatically by CAN.

There are five levels of error detection applied to every frame transmitted:
• Bit test: The CAN device that is transmitting tests the bus for each bit as it is

transmitted.
• Cyclic Redundancy Check (CRC): A 15-bit CRC sequence transmitted in the

frame is calculated by the transmitter and checked by the receiver.
• Encoding test: CAN encodes the transmitted bits using bit-stuffing where if more

than five bits of the same polarity are to be transmitted the sixth-bit is
automatically reversed (and restored by the receiver). Besides being part of the
error checking this technique assures an adequate number of bit edges to maintain
synchronization on the bus.

• Frame check: Specified bits within CAN frames are fixed format bits with
defined polarities, CAN receivers automatically check for these formats.

• Acknowledgement: Special acknowledgement bits follows the CRC field in the
CAN frame that are to be set by receiving devices if the CRC is correctly
received. The transmitter tests to see if these bits are set.

Errors detected during transmission and during reception are counted by the CAN device
and kept track of. If the transmit or receive error count reaches a set value the device is
automatically designated as Error Passive and certain restrictions are placed on its
operation. As future frames are transmitted or received by this device without errors the
error counts are decremented and normal operation is allowed again. If the error count
continues to increase to a higher set value the device is declared Bus Off and the drivers
are deactivated. Bus Off devices are allowed to return to the Error Passive state after a
lengthy number of inactive gaps are detected on be bus, which will vary with bus loading,
and then must recover from the Error Passive state in the usual way.

&$1�'HYLFHV
A sampling of CAN devices from various manufacturers is provided in Table 1. Some
devices are stand-alone CAN controllers but most are embedded in 8- or 16-bit
microcontrollers along with other system features. The list of devices is a moving target,
with an upward trend, and it is difficult to compile a listing without leaving out devices.

Beyond the microcontroller related configuration, and the availability of both Part A and
Part B CAN devices, ICs differ in other important respects so it important to know the
device and the application before making a selection. The CAN specification provides
for message filtering by the CAN device to reduce the interrupts to a connected processor.
Not an insignificant issue in some systems, a processor connected to a bus operating at
25% capacity at 500 Kbps could receive an interrupt every millisecond. Filtering is
applied only to the Identification field, and optional programmable filter masks allow
groups of identifiers to be accepted. This, plus other features (e.g., sleep modes, amount
of onboard RAM) vary between devices.

7DEOH�����&$1�'HYLFHV
Hitachi HCAN-1 National COP888
Intel AN82527 National COP87L84
Intel AN87C196 National COP840
Mitsubishi M37630 National COP984
Motorola MC68HC05 Philips P82C150
Motorola MC68HC705 Philips PCA82C200
Motorola MC68HC08 Philips PCA82C250
Motorola MPC500 Philips PCA82C251
Motorola MC68376 Philips XA-C3 (SJA1000)
NEC 72005 SGS-Thompson ST10F167
National COP884 Siemens SAB-C515 (8051)
National COP888 Siemens SAB-C167
National COP684/688/689 Texas Instruments TMS370x08D55
National COP889

7R�EH�FRQWLQXHG�«
Subsequent articles will describe the use of the CAN Identification field and Data fields,
along with actual data descriptions and information on the physical layer. Stay tuned,
better yet send comments and participate in the process …. the address is
nmea@coastalnet.com.

