
Time Scheduled CAN Systems
by

Lars-Berno Fredriksson
CTO CanKingdom Int.

030612
Abstract
Distributed embedded control systems, especially safety critical ones, have some common

requisites:

1. They should act and react on events by messages via a network communication

2. There are three classes of events

a) Events predictable in time

b) Events predictable in sequence but not in time

c) Events unpredictable in time

3. The system behavior should always be predictable in the time domain

CAN has been used successfully for several years for distributed embedded control systems thanks
to its robustness, efficient error control, efficient handling of colliding messages, message consistency
throughout the system, etc. It handles event-triggered messages very efficiently. However, it has not
been regarded as suitable for safety critical systems as it has no built-in services for guaranteeing the
timeliness of messages. Therefore other concepts based on time-triggered communication protocols
have been suggested, such as TTP and FlexRay. From a time predictability of messages appearing
on the bus, this direction is understandable but basically, the timing problem is related to the system
behavior, not the communication. A time-triggered communication is not well suited for rapid
deliveries of messages triggered by unpredictable or sequential events such as 2 a) and b) above. An
event-triggered communication is much more efficient. Further, an event-triggered communication
can easily be turned into a time-triggered behavior at the system level by having events generated by
applications related to one or more clocks. The communication layer is event-triggered and
guarantees that transmitted bits and bytes are received correctly. The timing of the transmissions and
the interpretation of the bits and bytes are taken care of at the system layer.

This article will describe a design concept for dependable and safety critical systems using CAN
for the communication. The main steps in the concept are:

1. Modeling the system using virtual clocks

2. Verifying that the model fits the timing requirements of the system

3. Finding solutions that make the system work according to the timing of the virtual clocks

4. Designing the real system

5. Verifying and validating behavior of the real system

The result of applying the concept is that modules can be developed without any knowledge of
the target system. The development work on the system and modules can to a great extent be
separated. The timing of the communication can be fully controlled with no or limited time support
at the module level. Some examples are provided to illustrate the concept and direct the minds toward
efficient solutions.

Distributed embedded control systems, especially safety critical ones, have some common
requisites:

1. They should act and react on events by messages via network communication

2. There are three classes of events

a) Events predictable in time

b) Events predictable in sequence but not in time

c) Events unpredictable in time

3. The system behavior should always be predictable in the time domain

CAN has been successfully used several year now for distributed embedded control systems thanks
to its robustness, efficient error control and handling of colliding messages, message consistency
through out the system, etc. It handles event-triggered messages very efficiently. However, it has not
been regarded as suitable for safety critical systems as it has no built-in services for guaranteeing the
timeliness of messages. Therefore other concepts based on time-triggered communication protocols
have been suggested as TTP and FlexRay. From a time predictability of messages appearing on the
bus, this direction is understandable but basic the timing problem is related to the system, not the
communication. A time-triggered communication is not well suited for rapid deliveries of messages
triggered by unpredictable or sequential events as 2 a) and b) above. An event-triggered
communication is much more efficient. Further, an event-triggered communication can easily be
turned into a time-triggered behavior at the system level by having events generated by applications
related to one or more clocks. The communication layer is event-triggered and guarantees that
transmitted bits and bytes are received correctly. The timing of the transmissions and the
interpretation of the bits and bytes are taken care of at the system layer.

This article will show a design concept for dependable and safety critical systems based on CAN
for the communication. The main steps of the concept are:

1. Modeling the system by using virtual clocks

2. Verifying that the model fits the timing requirements of the system

3. Finding solutions that make the system work according to the timing of the virtual clocks

4. Designing the real system

5. Verifying and validating the real system behavior

The result of applying the concept is that modules can be developed without knowledge about the
target system. The development work on the system and modules can to a great extent be separated.
The timing of the communication can be fully controlled with no or limited time support at the
module level. Some examples are provided to illustrate the concept and direct the minds toward
efficient solutions.

Time Scheduled CAN Systems

by

Lars-Berno Fredriksson

CTO CanSystem Int.

030201

1 Introduction
A definition of a Hard Realtime System is one where the maximum delay of any information

transfer is predictable and calculable. It has been shown that this requirement can be obtained in
any event-triggered CAN system if the maximum repetition rate of any message is known1. The
theory is based on the calculation of worst case, i.e., at an instance when the bus is free and every
message in the system would be initiated for transmission at the same time. The probability of this
occurring decreases with the number of modules in the system and the number of messages and
applying the theory results in poor utilization of the available bus bandwidth. The remedy is to
switch to a time scheduled message transfer. CanKingdom supports a global clock, so when this is
implemented, it is no problem to schedule messages according to traditional techniques. The
bandwidth can be further increased by taking advantage of the collision resolution mechanism in
CAN to allow some unscheduled messages, e.g., alarm messages, to take part in the
communication, and using the Action/Reaction option in CanKingdom can allow clock-less
modules to be utilized in the system. Some solutions are sketched in the article “CAN for Critical
Embedded Automotive Networks” in the July-August 2002 issue of IEEE Micro2. The purpose of
this article is to take the time scheduled concept with CAN yet another step forward and show
different ways to use the inherent properties of CAN, resulting in an efficient use of the bus
bandwidth using modules supporting different clock and clock synchronization alternatives,
ranging from highly sophisticated clock solutions down to no clock support at all.

The idea using time scheduled communication in CAN systems is not new. Bosch has
developed Time-triggered CAN (TTCAN) and this is soon to be a part of the ISO 11898
standard. It is generally believed that it is better for hard realtime systems to be time-triggered
than event-triggered, i.e., that measurements, event detections and message transmissions are
made at specified points in time. Further, time-triggered systems are regarded as synonymous to
time scheduled systems. These two beliefs will now be questioned: An event-triggered but time
scheduled approach is a better concept. The main goal of time scheduling CAN messages is to
make the communication behavior predictable, to shorten message latency and to make best
possible use of the bandwidth. To reach this goal, some generally accepted rules for time-
triggered communication should be violated. We can safely do so by using some CAN features
and the spirit of CanKingdom: The system designer should set the most efficient rules for his
system. We will end up with a handful of building blocks for setting up such rules for an event-
triggered but time scheduled system rather than a time-triggered system.

The key objective of control systems is to detect and react on events. The reaction on events is
to create new events. In distributed embedded control systems, the communication must at the
very least transfer information about events in the nodes fast enough for them to react in a proper
way to keep the system stable. Thus, for control systems, the basis for message scheduling should
be primarily based on events related to time, not on time related to events. In any control system,
mechanical as well as electronic, there is a delay between the detection of an event and the system
response to the event. The delay can be divided into parts, an undesired part and a desired part.
The undesired part is given by the selected construction elements and it is a design task to get the
desired delay with the right accuracy, taking in account the undesired delay. This is obvious for

1Chapter 5 System Time
Chapter 6 Bus management
The King's Page 10. (Optional) Minimum time elapsing between two consecutive transmissions of the
same CAN identifier.
The King's Page 11. (Optional) Circular Time Base Setup Page.
The King's Page 12. (Optional) Repetition Rate and Open Window Setup Page.

Event Signal Task Signal

Event

(msg)

Event Signal Task

Event

(msg)

Event

Event

(msg)

Module 1

Module 2

Bus

Figure 1 Model of a TSCK system

mechanical control systems. Construction material properties such as strength, stiffness, density,
speed of sound, etc. contribute to the undesired dely and sets the limits for the design possibilities
for structures as linkages, springs, gearboxes, etc. in systems to obtain the proper delays in
sequences controlling a machine, e.g., a steam or gas engine. The mechanical system also clearly
shows the difference in nature between the desired and undesired latency. The desired latency is
often a function of some kind of a reference speed but the undesired latency is only a function of
the physical time. Most distributed embedded control systems are designed to replace mechanical
systems. The problems are the same but the means are different. Construction material properties
are replaced by digital protocols, signal propagation, clock accuracies, etc.

2 Time Scheduled CanKingdom (TSCK)
CanKingdom is based on a design concept for distributed embedded control systems with a

clear separation between system design and module design. Although there has been some
support for time-triggered systems1 in CanKingdom, there has not been any real support for time
scheduling in the concept. This will now be added.

2.1 The TSCK concept

A basic idea behind TSCK is to organize events in time. Figure 1 shows the model. An event
at module 1 generates some kind of a signal that can be processed by a computer task. In this case
it is a temperature sensor that generates a signal that the task finds is above a threshold. The task

generates two responses: A signal that creates a first response event; turn on the warning lamp,
and a second response; transmission of a temperature message (the message transmission is also
an event). Module 2 receives the message and the task reacts by increasing the cooling liquid
flow. The message reception and the increased flow are events. A counter reaching a certain
number is also an event, regardless of whether the pulses are generated by a cogwheel or an
oscillator. The goal for TSCK is to help the system designer to relate detected events in one
module to reaction events in one or more other modules within defined deadlines by means
determined by the various module designers. The process is divided into three steps:

1. Create a virtual schedule for events based on a virtual time for the System.

2. Break down the Virtual System schedule into real Module Schedules based on real time.

3. Download the Module Schedules to the respective module.

This process is very similar to project planning and PERT/CPM or GANTT methods and tools
can to advantage be used here In the first step, the system designer creates a System Schedule. He
schedules all foreseeable major tasks and events required for the system performance according to
a virtual time line, generated by a virtual clock. In the next step, he breaks down the System
Schedule into Module Schedules related to a local time. The local notion of time can be different
in different modules but it is always sufficiently related to the system time to achieve the system
performance (Figure 2). The local schedules are “downloaded” to the respective module at
system start-up or during runtime, partly as specifications to the module designers and partly as
control messages (King’s Letters).

A

B

C

A1 B1 C1 A2 B2

A1

B1

C1

A2

B2

 t

Figure 2 TSCK development process. The system designer schedules
the whole system according to a virtual system time. The schedule is
broken down to module level. The notion of time can be different in
each module but is always related to the virtual system time.

Each module will then have a local schedule where events are related to time in some way.
Events includes transmission and reception of messages and thus the communication is an

Work

Spec

and

system

ready

at the

same

time

Rough

City

Specs

Final

Spec and

Product

Updated

module

specs

Cities

completed

from hereon

by control

messages

System

Modules

Time

Figure 3 The development of a TSCK system is an iterative process between the
system designer and the module designers. The final tuning of the modules is done
by means ofcontrol messages from a tool or supervising module.

integrated part of the control algorithms. The sum of all the module schedules will make up a real
system schedule based on real time. The notion of time can be different for different tasks.
Feedback loops may be based on the physical second, but message delays on the actual bit rate.
Control sequences can be described by using a notion of time where the basic time unit varies
with speed. Some events are stochastic and cannot be scheduled in time. They have anyhow to be
integrated in the system schedule as the responses to a stochastic event have to meet defined
deadlines. To schedule all events in a system might require more than one Virtual Schedule based
on different notions of time..

An important difference between TSCK and traditional time-triggered approaches is that
TSCK scheduling emerges from events and use time as a support for the scheduling. In traditional
time scheduled systems, events are handled in defined time slots. When an event has occurred and
created a signal, the signal is placed in a queue and treated in its allotted time slot. This is clearly
shown in message schedules where the bus access is distributed in time frames to avoid collisions.
TSCK starts with the event and uses the time to judge how fast the derived signal has to be
handled in relation to other signals in a given situation. The difference in thinking becomes
obvious in the message scheduling. An event is handled according to the Module Schedule by the
module software and the resulting message is handed over to the CAN Controller for
transmission. The collision resolution mechanism in CAN combined with the sum of the Module
Schedules will ensure that the message can be delivered in relation to other messages as fast as
possible and within its deadline instead of in a specific time slot. TSCK uses a combination of time
synchronization and event sequence synchronization for scheduling of tasks. The TSCK concept
covers the whole range from a pure event-triggered system to a pure time-triggered system. In
most cases, the optimal system performance is achieved somewhere in between these extremes. It
is usually not possible to find the right balance until a prototype of the system is up and running.
The development process is iterative, starting with rough specifications that are refined stepwise.
When the project reaches its final stage, the development of all the modules are completed and the
last adjustments are done by means of control messages from a tool or a supervising module (
Figure 3).

2.2 Virtual Time and Virtual Clock
The Virtual Clock, VC, is used by the system designer to set up an exact global time reference

for his system, but only for specification purposes. The VC is an imaginary system clock, showing
a Virtual Time (VT). Each module in a system has its own notion of time, the Local Time (LT)
that deviates more or less from the VT. It is the system designer’s task to set up relations between
the different CTs and the VT. With the help of these relations he can coordinate the different
modules to work in concert and, among other things, transmit messages in a timely manner. Using
the VC, the system designer creates a system specific notion of time that can be or not be related
to any other time standard, e.g., UTM. The VC is just an aid in the design process to make the
system behavior predictable. The VC may or may not be replicated by a real clock in a module.

The VC produces either a linear or a circular time. A linear time can either be infinite
(continuously growing) or definite (starting at an event and finishing at an event or after a certain
time). A circular time runs seamlessly and continuously from a minimum value to a maximum
value. GPS time is an example of an infinite linear time. A church clock shows a circular time. The
time keeper at a track and field meet uses a definite linear time, starting at the “go” event and
ending when the last athlete has crossed the finishing line. The difference between linear and
circular time can be subtle. The starting and finishing event can be the same, e.g., when a master
clock passes 12 o’clock. This might look like a circular time but it is not. A circular time revolves
continuously, independently of any specific events. The difference between the two revolving
times might look unimportant but is not. With a revolving linear time, it is natural to synchronize
all the clocks in a system at the same event, the starting point. It is also natural to assume that all
nodes have the same kind of clock. In a circular time, each clock is synchronized when needed
and each node has a clock good enough for its tasks.

The VC issues a Virtual Time Tick (VTT). The length of the VTT can be either constant or
variable. In most systems, the VTT is constant and related to the physical second as a decimal or
binary fraction, e.g., 1 ms or 1/256 second tick, or to a specific frequency as the 1.25 ms tick
based on 13 MHz in Bluetooth and GSM systems. In some cases, it is an advantage to have a
variable VTT, e.g., to have a system time related to the angular speed of an engine or to have the
time running slower when the system is in sleep mode, but in parallel have a fixed time tick for
communication tasks. Many sports like football, hockey, basket ball, etc. make use of a variable
time tick. The time tick is usually the physical second but now and then the referee stops the time,
i.e., creates a long time tick, making the game time run slower than the standard time. It might be
pointed out that a VTT may or may not be related to the bit timing on the CAN bus.

2.3 Local Clock and Local Time
A cornerstone in the CanKingdom concept is that a module designer should need a minimum

knowledge about the system into which his module will be integrated. He should provide a variety
of options for the system designer to pick the one that fits the system. The description of the VC
clearly shows that there are several alternatives for a system clock. By definition, the VC
represents the exact time within the system. Any other clock in the system is related to the VT.
Some times the VC can be exactly mapped by one master clock in a system but in other cases
several clocks in a system can have the role of a master, each of them deviating slightly from the
VC. Then the average time of all of them will show the VT. There are also cases when there is no
master clock at all but every clock in the system is related to the VC through a chain of event
relations. Thus, at the module level it is not necessary to know anything about the VC. The only
thing required is a possibility for the system designer to relate the LT to the VC. The commonality
of any CAN system is the CAN bus, so the first option to get a relation to the VC is via the bus
traffic. In CanKingdom systems, the simplest way to provide such a relation is to support the

King’s Page 5, “Action/Reaction.”. By means of the KP5 the King can instruct the module to
execute a task as soon as a specific message is received. Thus, a module does not even have to
have a clock in order to have a relation to the VC and to participate in a time scheduled system.

A module may provide a Local Clock (LC). In its simplest form, this is just a free running
counter with a specified accuracy. This is enough to make it possible to set up the means of a
local schedule based on this local time that in turn can be correlated to the VC by one or more
messages through KP5. If better accuracy is needed, system wide synchronized module clocks can
be implemented. By supporting KP11 “Circular Time Base setup Page” and KP12 “Repetition
Rate and Open Window setup Page”and the “Time Herald”in the module, the King can
synchronize a LC to other clocks in the system.

2.4 The Virtual Schedule
Like the VT, the Virtual Schedule (VS) is just an aid for the system designer to specify the

system requirement for the relation between events in time (including message transmissions and
receptions). The VS shows the ideal timing, and acceptable deviations from this are then
described with the VS as reference. The Virtual Clock generates the Virtual Time line and each
message is assigned a time slot when it is allowed to occupy the bus. The minimum and maximum
time a message will occupy the bus, how much it will jitter within the slot, and how much the slot
itself will jitter in reality, depends on the relation between the VT and the LT. There are several
ways to relate the VT to the local LT and the relation can be different between different modules
as well as different for different events and tasks within a module. The relations can also shift
between modes such as set-up, diagnostic, runtime, etc.. Some examples on relations:

1. Some or all modules are connected to the same external time reference, e.g., GPS
2. One module clock is regarded as system clock and other module clocks are

synchronized to that clock.
3. The LT is set to specific values at reception of certain messages.
4. The LT is set to specific values at certain events.
5. The module lacks a LC and events are related to reception of certain messages.

2.5 Module Schedule
The CanKingdom concept does not require a module to have any knowledge about how the

messages are scheduled within the system. Only the system designer needs to know. The module
has only to provide the possibility for the King to schedule messages according to the LC and/or
to certain events. The combination of all local schedules will create a real system schedule. As
mentioned in section 2.2, a module can participate in a Time Scheduled System even if it has not
got a clock and schedule. In the next version of CanKingdom, there will be support for setting up
and identifying module schedules.

3 Examples of message scheduling
The first approach is a traditional time schedule and this is then compared with other

approaches. They will show that traditional systems are resource hungry because they rely on
time-triggered transmissions and that a more than three fold gain can be achieved by applying time
scheduling on event-triggered transmissions.

 To illustrate the different solutions, we use a small and simple system with only three modules,
A, B and C (Figure 4). They can transmit two messages each: A1 & A2, B1 & B2, C1 & C2

respectively, with the same length of 100 bits, the same update rate, 600 ms, and a maximum
latency time of 200 ms. Each module can also transmit an alarm message (indicating local
failures), Aa, Ba and Ca respectively with a maximum latency time of 600 ms.

Figure 4 Example system with the modules A, B and C.

We will begin the examples by writing a short VS for the regular messages. This is the ideal
time schedule for our messages and the outcome of the different methods will be compared with
this. The most efficient schedule during normal conditions we can come up with is to transmit the
messages back to back as this would require the lowest bit rate. We can set the virtual time tick to
1 ms, equal to one bit, the virtual time slots to 100 VTT, which gives us the virtual time schedule
shown in to figure Figure 5.

Figure 5 Basic Virtual Schedule

3.1 Traditional time-scheduling
Beside being time-triggered, the basic rules for a traditional time-scheduled system are:

1. Each message is assigned specific time slots
2. Each module has a clock that is synchronized to a master clock with a certain accuracy
3. Message collisions on the bus are not allowed
4. Corrupted messages are not retransmitted

1. Increase the frequency of clock synchronization messages
2. Widen the time slots
3. Use more accurate clocks in the modules

Rule 1, “Each message is assigned specific time slots,” is fulfilled with the basic virtual schedule
for repeatedly transmitted messages. Each message has its own time slot, A1in T1, B1 in T2, C1
in T3, A2 in T4 and so forth and the schedule repeats itself. The schedule can be shown in a table:

T1

100 ms

T2

200 ms

T3

300 ms

T4

400 ms

T5

500 ms

T6

600 ms

A1 B1 C1 A2 B2 C2

A1 B1 C! A2 B2 C2

But the alarm messages have to be scheduled as well although they will rarely appear during
normal conditions To make space for them, the time slots have to be made smaller, i.e., the VTT
has to be shortened to .67 ms and the bit rate increased to 1.5 kbit/s to meet the maximum delay
allowed for alarms, 600ms. The adjusted schedule is shown below.

67 ms 133 ms 200 ms 267 ms 333 ms 400 ms 467 ms 533 ms 600 ms

A1 B1 C1 A2 B2 C2 Aa Ba Ca

Rule 2, “ Each module has a clock that is synchronized to a master clock with a certain
accuracy” sets some physical requirements. Each module needs its own local schedule containing
at least those messages it should transmit or receive. The reference for this schedule is the local
clock and this deviates more or less from the master clock. We will not discuss the master clock
here, only assume that it communicates time by time messages on the bus. The ISO 11898-4
standard gives examples of how it can be done. Figure 6 shows that module A has a positive
offset error (dA) and a correct clock frequency, that module B has a negative offset (dB) and a
correct clock frequency and that module C has a slightly faster clock resulting in an increasing
offset over time (dC - dC’). There are three ways to cure this problem :

A

B

C

Bus

A1 B1 C1 A2 B2

A1

B1

C1

A2

B2

dA

dB

dC dC'

A1 B1 C1 A2 B2

T1 T2 T3 T4 T5 . . .

C2

T4

C2

C2

Figure 6 Impact of the deviation of module clocks to the master clock.

To keep the local clocks synchronized, we have to schedule a message from the Time Master
to announce the correct system time. How often this has to be sent depends, among other things,
on the quality of the least accurate clock within the system which determines how often the clocks
in the system should be synchronized.

There are many different ways to synchronize clocks and to keep them in shape using the bus
communication. This paper merely discusses principles, so we use just one additional message,
TM, to cover the issue. We have then to add a time slot for TM. To fulfil the timing requirements,
we decrease the VTT to .6 ms and increase the bit rate to 1.67 kbit/s:

60 120 180 240 300 360 420 480 540 600

TM A1 B1 C1 A2 B2 C2 Aa Ba Ca

To meet Rule 3 “Message collisions on the bus are not allowed and Rule 4 “Corrupted
messages are not retransmitted” the message rate has to be at least doubled to meet the update
rate for the ordinary messages and the maximum latency for alarm messages. The reason for this
is that disturbances on the bus are stochastic and thus cannot be scheduled. If a message is
corrupted on the bus, it has to wait for its next time slot and still meet its maximum latency time:

n t 30 60 90 120 150 180 210 240 270 300

1 TM A1 B1 C1 A2 B2 C2 Aa Ba Ca

2 TM A1 B1 C1 A2 B2 C2 Aa Ba Ca

The VTT has now to be 0.3 ms and the bit rate 3.33 kbit/s. As the messages are transmitted
back-to-back, all clocks have to be perfectly synchronized. Assuming the clocks can be accurate
to within +/- .5%, the bit rate has to be further increased by 1% to avoid collisions due to jitter.

In this example we started with a bandwidth requirement of 1 kbit/s for the basic message
transmission and ended up with 3.4 times more to cope with alarm signals, corrupted messages
and clock accuracies. All modules have to support clock synchronization and to be equipped with
clocks good enough to keep time within half a percent of the master clock. On top of what is
already discussed, the system relies upon that each local clock is working correctly. To enssure
that this is true, additional resources are required. It can be concluded that time-triggered systems
are resource hungry. A better approach is needed and TSCK is a candidate as will be shown
below.

4 Violating the rules
In modern CAN Controllers the automatic retransmission of corrupted messages can be turned

off, thus removing the biggest obstacle to use CAN in time-triggered systems. The nondestructive
message collision resolution feature of CAN opens up a safe way to violate the third rule
“Message collisions on the bus are not allowed” in time-triggered systems. Breaking this rule
results in more efficient use of the bandwidth and allows for using less accurate clocks in
modules. It will also be shown that the fourth rule “Corrupted messages are not retransmitted”
can also be violated safely and successfully. The communcation is then not time-triggered but can
still be time scheduled.

4.1 Allow message collisions
The key to better use of the bandwidth is to allow message collisions. The very bandwidth

thieves in the time-triggered example are the alarm messages. As they should not be needed
during normal conditions, they do not lend themselves to be time scheduled. They should be
transmitted when needed. The non-destructive collision mechanism in CAN makes the
communication fully predictable also when collisions occur. The first step is to use this feature for
alarm messages but it will also be shown that scheduling messages to deliberately collide will
result in a more efficient use of the bandwidth and less demands on clock accuracy.

4.1.1 Alarm messages

In traditional time-scheduled systems, alarm messages take a great portion of the bandwidth.
The reason for this is that they do not really fit in the time scheduling concept as they are
genuinely triggered by unpredictable events. The maximum latency time allowed for alarm
messages is usually short and thus they have to be allotted frequent time slots. In our example a
long latency was allowed, but thirty percent of the bandwidth still had to be allocated for the
alarm messages. By allowing message collisions, no bandwidth has to be allotted to alarm
messages. They can be transmitted immediately whenever alarming conditions are detected. The
alarm messages are then unscheduled:

n t 43 86 129 171 214 257 300

1 TM A1 B1 C1 A2 B2 C2

2 TM A1 B1 C1 A2 B2 C2
The VTT is now .43 ms and the bit rate 2.32 kbit/s. The bandwidth utilization is increased by

30% and, on top of that, the maximum latency time of an alarm message is reduced seven times,
now less than 86 ms compared with 600 ms for the traditional schedule!

4.1.2 Reduced clock accuracy requirement

Less accurate clocks can be used by deliberately scheduling messages to collide with the
respectively preceding ones on the bus. If a message B collides with the previous one A after the
first bit of A is sent (the Start Of Frame) on the bus, according to the CAN rules, B waits until A
is fully transmitted and then accesses the bus immediately . As the next time slot is reserved for B,
no other message is competing for the bus and B will be transmitted regardless of its CAN
priority. If pending messages are “pre-fired” 49 bits into the preceding messages, each clock could
deviate +/-49 bit times from the LC and the timing on the bus would still be correct (Figure 7). If
a module knows how much its schedule is “pre-fired”, it can use the actual message release time
to adjust its clock offset.

A

B

C

Bus

A1 B1 C1 A2 B2

A1

B1

C1

A2

B2

dA

dB

T1 T2 T3 T4 T5 . . .T4

C2

C2

TM

T0

A1 B1 C1 A2 B2 C2

dC

TM

Figure 7 Local schedules deliberately skewed into the previous time slot. The CAN
collision resolution mechanism puts the messages into the correct slot.

4.1.3 Allow retransmissions

As a rule of thumb, more than one error frame in one thousand messages indicates a severe
problem in a CAN network. As errors are unpredictable events, the bandwidth was cut to half to
cope with the problem in the previous examples. By allowing retransmission of a corrupted
message, assigning a proper priority to each message, the extra bandwidth needed for alarm
messages can be cut down to almost zero and the maximum latency time for any message is
decreased by a factor 2. In Figure 8 a small gap between the messages has been introduced in the
virtual schedule to allow for retransmissions. The “pre-firing” is applied in the local schedules.
Message A is corrupted just before it is completed and immediately retransmitted (A’). A’ now

occupies a part of the next slot intended for B1 and B1 has to wait until A’ is completed. The
following messages will be sent back-to-back until the sum of the gaps has compensated for the
additional message. In this case, with inaccurate clocks and a long “pre-firing,” the priority of the
messages has to be in decending order. Otherwise some messages may shift place in the back-to-
back sequence. This is of importance only for message timing as each message has a unique
identifier and is not dependent on the slot for identification.

A1 B1 C1 A2 B2

A

B

C

A1A1

B1

C1

A2

B2

Bus B1 C1 A2 B2A1 A1'TM

TMVS

Figure 8 Retransmission of a corrupted message

The latency due to a transmission can be fully controlled by the selection of CAN identifiers,
gap between messages, clock accuracies and their “pre-firing.” It would be a nice feature if the
maximum number of attempted retransmissions could be set in the CAN Controller. This is
currently not the case but the number of attempts can be controlled by the module CPU if the
module has a CAN Controller with error flag indication (which most CAN Controllers have).

4.1.4 Time scheduled systems without time master

It is often taken as a prerequisite that a time scheduled system needs a physical time master.
This is not the case. Many applications need a specific and accurate sequence of messages only
for a short period of time, e.g., during one revolution of a shaft. Examples of such systems are air-
jet weaving machines and combustion engines. In an air-jet weaving machine, the opening of the
main air-jet nozzle and the relay nozzles have to be accurately controlled in time when the shed is
open to achieve a high quality fabric and low energy cost. In this case, the VTT is constant. A
combustion engine needs a precise control of the closing and opening of valves and the point of
ignition, all related to the shaft position. This can be obtained by a virtual time where the VTT
changes with the rpm. Common to both examples are that some tasks in some modules have to be
coordinated with the turning angle of a shaft in the machine. There are several control systems
that show the same or similar characteristics. Such systems can be seen as time-triggered during
the development phase, i.e., when making the Virtual Schedule, but be implemented as event-

triggered in each module, the events being certain messages appearing on the bus. The local
schedules are then implemented as delays after reception of certain messages before generating
one or more events. The delays are measured by the local clock and how this is done is entirely a
local problem.

Figure 9 illustrates the principle. A combustion engine is controlled by a CAN network One or
more sensors detects the top dead center (TDC) position of the shaft.

A1 C1 A2 B2TDC

Figure 9 Sequential message scheduling with a VTT related to shaft speed in a
combustion engine.

When the TDC, is detected, the TDC sensor module or modules immediately transmit a
message without data. If there are more then one detector module, they may all use the same
identifier. Messages that hit the bus within the SOF bit will all appear as one and the same. A
timeout that aborts a transmission attempt after a number of bit times would avoid those missing
SOF duplicating the message or retransmitting at too a late time if the TDC message is
corrupted. The reception of the TDC message starts the virtual clock and the virtual schedule
would look as follows:

VT Message

0 TDC

2 A1

20 C1

30 A2

60 B2

The virtual schedule is then converted to local schedules for each module:

Module A Alternative schedule

Trigger
message

Delay
Time Ticks

Transmit
message

Trigger
message

Delay
Time Ticks

Transmit
message

TDC 2 A1 TDC 2 A1

TDC 30 A2 C1 0 A2

Module B Alternative schedule

Trigger
message

Delay
Time Ticks

Transmit
message

Trigger
message

Delay
Time Ticks

Transmit
message

TDC 60 B2 A2 10 B2

Module C Alternative schedule

Trigger
message

Delay
Time Ticks

Transmit
message

Trigger
message

Delay
Time Ticks

Transmit
message

TDC 20 C1 A1 8 C1

One way to schedule messages is to let all of them use the TDC message as triggering event,
but as shown in the alternatives, only one has to use the TDC message and the others can be
related to the virtual clock via a chain of messages. In the highly simplified example above, the
local Time Ticks happened to be the same as the VTT. This might not always be the case and is
not necessary. A module has only to know its own schedule and it is the task of the system
designer to see to it that all local schedules fit into the virtual schedule.

Only messages are scheduled in the example but the same process can be applied for other
purposes. The process can be described as “Input event” ! “task”!”Output event” and
illustrated in a table:

Input event Task Output event

Shaft reaches TDC Sense TDC Transmit TDC message

Receive TDC message Wait 20 Time Ticks Transmit C1

Shaft reaches BDC Sense BDC Transmit BDC message

Receive BDC message Wait 140 Time Ticks Fire spark plug

Such relations can be set up with the King’s Page 5, “Action/Reaction” in CanKingdom.

The sequences in a combustion engine are related to the shaft angle. The VTT and the local LT
tick (LTT) should then change linearly with the shaft speed to map the position in time:

VTT= const*rpm , LTTA =constA*rpm, LTTB =constB*rpm, LTTC =constC*rpm

The fact that VTT and LTT are not related to the CAN bit timing has to be considered when
calculating the scheme. From a module point of view, the time a message transmission will take is
variable and increases with the rpm.

5 Robust communication
A safety critical system has only one safe state and that is “power off”. As soon as the system

is started, it is only a matter of statistics before it gets into a dangerous state. It is the system
designer’s task to minimize the probability for the system to enter a dangerous state. A first step
in reducing the probability for failures is to make the communication predictable and reliable. One
reason for choosing a time scheduled approach is its predictability. Traditional time- scheduled
communication relies on a global clock and each module being synchronized to this clock. If the
synchronization is lost, the reliability is also lost. There are two main causes for lost
synchronization, either the global time generation is corrupted or one or more modules get it
wrong. There are several ways to generate the global time. One method is to have a time master
that transmits the right time. This method is used in ISO 11898-4, “Time-triggered CAN.” Here it
is obvious that the synchronization is lost if the time master fails. Therefore one or more
redundant time masters are introduced and an arbitration procedure assures that only one will
appear at a time. It can always be questioned whether a redundant system is safer than a non-
redundant one. The more complex a system is, the more things there are that can go wrong. Even
if the global time is correctly generated, there is still the risk that the communication will be
corrupted by an unsynchronized module. The cure for this is often a bus guardian at each node
but this adds additional components that can fail.

Another approach is to keep the system as simple as possible and make it failsafe. As shown
earlier in this article, some traditional rules for time scheduled communication can be violated
safely if the CAN protocol is used. The communication can be outlined as a traditional time
scheduled one. If the time master fails, it will slowly degrade into an unsynchronized
communication, relying on message priority. An unsynchronized node would only cause a jitter in
the time slots. This can be accepted as the message identification is not dependent on the time
slot. Each message has its own identifier. Timing problems can easily be detected. On the system
level, an unsynchronized module is revealed by the CAN identifiers. By providing a module a
schedule for reception of messages from two or more other modules, it can easily detect if it is
out of synch: If all received messages arrive at the wrong time, the module’s own clock is
incorrect. In such a case, it may shift into a backup mode and use other messages on the bus as
transmit triggers.

5.1 Double triggers
An expected but missing message on the bus can be considered as a single failure. If this

message is used as a trigger for other messages to be sent and no other steps are taken for their
transmission, the failure will propagate. One way to prevent this situation is to use two trigger
messages from different modules. If the delay for the message transmission can be set individually
for each trigger message, the triggered message will hit the right time slot regardless of whether
one of the triggering messages appears or not. A missing message creates an empty slot on the
bus. If the delay is set to the same value, a missing message will result in a shift of the slots to the
left and leave the bandwidth to be used later on for an unscheduled message. Both cases are
covered in the examples below. Let us start with the empty slot case. We assume that the virtual
schedule looks as below:

VT 0 12 24 36 48 60

Msg A1 B1 C1 A2 B2 C2

The modules do not support a global clock so the local schedules will be based purely on
trigger messages with delays according to their local clocks. The local schedules for keeping the
time slot in case of a missing trigger may look as follows:

Module Trigger message Delay Transmit message

A

C2 2 A1

B2 12

C1 2 A2

B1 12

B

A1 2 B1

C2 12

A2 2 B2

C1 12

C

B1 2 C1

A1 12

B2 2 C2

A2 12
The result is shown in the upper part of Figure 10.

 The alternative Virtual Schedule for getting a slot shift in case of a missing message will look
as below:

VT 0 12 24 36 48 60

Msg A1

B1

B1

C1

C1

A2

A2

B2

B2

C2

C2

A1
The schedule allows two adjacent slots for each message transmission. During normal

conditions, the upper schedule is valid, but if one of the messages is missing, the system will
automatically switch to the lower schedule. One way of interpreting this solution is that each
message is deliberately delayed one slot during normal conditions.

The local schedules can look as shown below:

Module Trigger message Delay Transmit message

A

C2 2 A1

B2 2

C1 2 A2

B1 2

B

A1 2 B1

C2 2

A2 2 B2

C1 2

C

B1 2 C1

A1 2

B2 2 C2

A2 2

 Figure 10 shows the difference between the two approaches. The first one leaves a gap and
the timing is maintained. The second one shifts the timing one message ahead, allowing a message
to be inserted later for restoring the timing.

A

B

C

A1

C1

A2

B2

C2

C2

C2

Bus

A1 C1 A2 B2

B1

A

B

C

A1

B1

C1

A2

B2

Bus

A1 C1 A2 B2 C2

C2C2

B2

B2

Figure 10 Double triggered messages and a missing message. A missing message
results in a void slot when using delay compensating triggers (top). Same delay for
both triggers result in a left shift of the slots (bottom)

1. Tindell, K., Burns, A.; Guaranteeing Message Latencies on Controller Area Network
(CAN), Proceedings 1st International CAN Conference, Mainz 1994.

2. (1996) “CAN Kingdom. Ver. 3.01" www.cankingdom.org

5.2 Priority controlled schedules
The collision resolution mechanism in CAN is a key feature for an efficient use of the

bandwidth. It has earlier been shown that messages will appear back-to back on the bus if they are
deliberately scheduled to collide by the “pre-firing” method and that the latency is predictable.
This method can be further developed. Messages can be time scheduled to act as heart beat or life
guarding messages at a low frequency and shift, to a higher transmission rate or transmission on
events according to predefined conditions. This method lends itself to “ imprecise programming”,
i..e., that the bandwidth is designed to meet the needs for control messages during extreme
conditions to maintain safety but that the same bandwidth can be used for obtaining better or
smoother control during normal conditions. The full bandwidth can then be safely saturated
during a critical condition if the messages not needed for safety are assigned lower priority than
those needed for maintaining safety.

6 Summary
A basis for designing distributed embedded control systems in general and safety critical

systems in particular is that the latency of each message is finite and predictable. Time-triggered
communication is generally regarded more predicable than event-triggered ones. Traditional time-
triggered scheduling requires a substantial part of the bandwidth to be allocated to messages
originating from rare events, e.g., alarm messages for guaranteeing a short latency. Significant
measures have to be taken to assure that a correct notion of the global time is prevailing within
the system. Time-triggered CAN systems require substantial resources in the shape of bandwidth,
software and hardware to reach the goal of dependability.

Time Scheduled CanKingdom is an event-triggered but time scheduled approach to solving the
problems of dependable CAN systems. The design process is characterized by two separate levels,
a system level with a system designer and a module level with module designers. The modules are
designed in a way that they can relate input events to output events according to commands from
the system level. They may have a local clock and support a global time, but that is not
mandatory. The timing analysis of the system is performed off line during the development phase.
This is condensed to one or more virtual schedules which in turn are broken down to individual
schedules for each module. In its simplest form, timing between sequential events in different
modules is maintained by message transmissions and reception. Message collisions on the CAN
bus are allowed, using the predictable and non-destructive resolution mechanism in CAN. By
deliberately schedule messages to collide, the available bandwidth can be used to its maximum.

