
 Paper Number: 021178
An ASAE Meeting Presentation

A Structural and Modular Approach to Implement Communication
Interface For Tractor Electronics Communication Using CAN Kingdom

Jiantao Wei Naiqian Zhang Ning Wang

 Research Assistant Professor Research Associate
Department of Biological and Agricultural Engineering

 Donald Lenhert
 Professor

 Department of Electrical and Computing Engineering

Mitch Neilsen Massaki Mizuno Gurdip Singh
 Assistant Professor Professor Associate Professor

Department of Computing and Information System
Kansas State University

Manhattan, Kansas, 66502

Written for presentation at the
2002 ASAE Annual International Meeting / CIGR XVth World

Congress
Sponsored by ASAE and CIGR

Hyatt Regency Chicago
Chicago, Illinois, USA
July 28-July 31, 2002

Abstract. Modern tractors and implements will be equipped with an increasingly large number of
electronic control units (ECU) together with a field bus for exchange of information. Two field bus
standards, DIN9684 (Germany) and ISO11783 (ISO), both based on Bosch CAN (Controller Area
network), have been developed to provide open systems to allow on-board-tractor ECUs built by
different manufacturers to communicate with each other. These standards detail the necessary
communication interface requirements, such as message types, identifier assignments, network
management, etc. to enable a plug-and-play capability for these ECUs. However, the standards did not
specify how to implement this communication interface, leaving it to individual ECU manufacturer.
Given limited processing power and memory resources for embedded ECUs, development of
distributed real-time control software conforming to ISO11783 or DIN9684 standard is a challenging
task for engineering design teams, especially for small implement manufacturers. In this paper, a
structural, modular software approach to implement the communication interface based on CAN
Kingdom protocol was presented. This approach is illustrated by developing a DIN9684- conforming
weed-sensing and spray-control system. It is also expected to work with the ISO11783 standard.

Keywords. CAN, DIN9684, ISO11783, CAN Kingdom, communication interface, modular,
structural, weed sensor

The authors are solely responsible for the content of this technical presentation. The technical presentation does not
necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution
does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal
peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of
this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2002. Title of
Presentation. ASAE Meeting Paper No. 021178. St. Joseph, Mich.: ASAE. For information about securing permission to reprint
or reproduce a technical presentation, please contact ASAE at hq@asae.org or 616-429-0300 (2950 Niles Road, St. Joseph,
MI 49085-9659 USA).

 1

A Structural and Modular Approach to Implement Communication Interface
For Tractor Electronics Communication Using CAN Kingdom

Jiantao Wei, Naiqian Zhang, Mitch Neilsen, Donald Lenhert
Ning Wang, Masaaki Mizuno,Gurdip Singh

1. Introduction
Controller Area Network (CAN) was developed by Robert Bosch GmbH with the support of Intel
(Bosch 1991) in the 1980�s. Although CAN was initially developed for the automotive industry, it
also has been widely used in other industries such as process control, home automation, robotics, etc.
It was estimated that more than 140 million CAN nodes have been installed worldwide. (Gabriel et al,
1999). The International Organization of Standard (ISO) documented CAN in a standard, ISO11893
for high-speed networking in 1993, and in ISO11519-2 for low-speed networking in 1994. (ISO,
1993; ISO, 1994)

CAN employs a contention-based, non-destructive medium access protocol to allow higher-priority
messages to be transmitted before lower-priority messages. A CAN message consists of 11-bit (basic
CAN) or 29-bit (extended CAN) identifier and up to 8 bytes of data load. The identifier part was used
as access priority during bus contention as well as to identify a specific message. The CAN medium
access and data link protocol was implemented in CAN controller hardware, which is now available
from most of silicon manufacturers. A CAN controller is typically connected to the host processor via
dual-port RAM, whereby the CPU and the controller can access the memory simultaneously. This
area of memory typically was divided into a number of independent message slots (buffers). From
programming perspective, a received message is copied into a corresponding slot by CAN controller,
from where the CPU reads out the message. Similarly, a transmitted message is copied into a slot by
CPU, and is read out by CAN controller and sent out to CAN bus.

CAN only defines the physical layer and data link layer according to the OSI 7-layer reference model.
In practice, implementation of very simple CAN-based systems shows that, besides the two basic
layers, further functionalities, such as identifier assignment, network startup, supervision of node etc.,
are desirable. For industrial automation applications, the need for an open, standardized higher layer,
which support interoperability and exchangeability of devices from different manufacturers, was
raised. In automotive industry, SAE J1939 was documented to be a higher level standard to govern
car electronics communications (SAE, 1996). For sea borne target, NMEA 2000 is such a governing
standard (NMEA, 2000).

In agricultural area, a requirement for such a standard was recognized as early as in 1986 in Germany.
(Auernhamme, 1993) In 1998, a German standard, �LBS�- the Mobile Agricultural Bus document
was published, and it was later standardized in DIN9684. Recently, the International Standards
Organization working group ISO TC23/SC19/WG1 balloted on the ISO11783 standard (ISO, 2001).
The DIN9684 standard will be abandoned and the ISO11783 standard will be the future-governing
standard in agricultural electronics communications. ISO11783 was partially based on the DIN9684
standard, and partially based on the J1939 standard. Major agricultural machinery manufacturers, such
as John Deere, AGCO, CASE, have developed proprietary CAN-based precision agriculture systems.
Now they have taken steps to migrate their CAN systems to conform to the ISO11783 standard.

CAN Kingdom (Fredriksson, 1993) was developed by Kvaser, Sweden in 1990�s, and it is a different
kind of protocol from the above-mentioned standards. The functionalities of SAE J1939, NMEA
2000, DIN9684, and ISO11783 standards are very similar. All of them specify provisions such as
device profiles, identifier distribution, and network management. CAN Kingdom (CK) is a set of
protocol primitives that are commonly used in CAN communication. It gives system designers full
control of the CAN network, and allows system designers and module designers work independently
to a great extent.

 2

One advantage of CK is that it can work with other open systems, such as J1939, DIN9684, and
ISO11783. The main objective of this paper is to demonstrate how application of CK can be applied
to help the development of a DIN9684 system.

As precision agriculture research and practice proceed, the ISO11783 standard will be more widely
accepted. However, ISO11783 does not specify how to implement this communication interface,
leaving it to individual manufacturer. Given limited processing power and memory resources of
embedded ECUs, the development of distributed real-time control software conforming to ISO11783
or DIN9684 standard is a challenging task for engineering design teams, especially for small
implement manufacturers. In this paper, a structural, modular software approach to implement the
communication interface using CAN Kingdom primitives is presented. This approach is illustrated by
developing a DIN9684- conforming weed-sensing and spray-control system. Our original intention
was to build an ISO11783 system using CK. As ISO11783-conformant virtual terminal was not
available at that time, we started to build our system based on DIN9684. We believe the approach we
developed is expected to work with ISO11783 standard with minor modifications, since DIN9684 and
ISO11783 are very similar standards.

2. DIN9684
In this section, we will briefly review the essential part of the DIN9684 standard including the
message type definition and network management procedure.

(1). Message Types

Table 1: DIN9684 message types and their priority (identifier structure)
 (Priorities)
Identifier
Bits 1-3

Identifier
Bits 4-7

Identifier
Bits 8-11

Message description

000 AGETYPOS System functions
 A= 1: login; A= 0: system management
 GETY=Implement type, total 16 types
 POS=Implement mounting position, total 8 positions
001 0100 SEND Basic data 1:driving velocity and traveled distance
 0101 SEND Basic data 2: PTO speed, engine speed, hitch position
 0110 SEND Basic data 3: content not specified
 0111 SEND Basic data 4: content not specified
 10PD SEND Process data
 1111 SEND Calendar: data and time
010 RCVR SEND Targeted message
011 RCVR SERV Service message: Service >>User
100 SERV SEND Service message: User >>Service
101 XXXX USER Partner system message
110 XXXX XXXX Free
111 XXXX XXXX Free
SEND: 4 bit address of the sender of a message
RCVR: 4 bit address of the receiver of a message
SERV: 4 bit address of the provided service
USER: 4 bit address of the job computer in the partner system
PD: 2 bit to indicate process data types: 00-set point; 01-actual value; 10-set point request; 11-actual value
request

DIN9684 is based on CAN 2.0A, which implies 11-bit message identifier, and runs at 125 bits/second.
The CAN messages were classified into 8 priority groups according to first 3 bit of the identifier (the
smaller the number, the higher the priority). The remaining bits of the identifier are further divided
into subgroups to represent different information. (Table 1) The group with priority �000� is system
function message for network management purpose. The group with priority �001� defines the
message types for basic tractor information, such as driving velocity, PTO revolution, engine speed,

 3

etc. The message with priority �010� indicates targeted message, which put receiver�s address in the
identifier for hardware filtering messages. The messages with priority �011� and �100� are used for
system service purpose. The message with priority �101� is partner message, which can be seen as a
secondary network that uses the infrastructure of the main network. Such a system can be a
proprietary solution of a manufacturer for internal control of an implement. The message with priority
�110� and �111� are not defined, and are free to use.

The address width of DIN9684 is only 4 bits; therefore it can only allow 16 ECUs to be connected to
the bus at one time. The address of an ECU is acquired dynamically through an address claim
messages after this ECU�s login process.

(2). DIN9684 Network Management
DIN9684 specifies a network management procedure to allow open system interconnection. This
network management is implemented through system function message with priority �000�. There are
two types of system function messages (Table 1): A=1 means a new user login message; (Figure 1)
A=0 means system management messages. (Figure 2)

Figure 1: Log in message format

The GETY and POS bits should be determined based on implement type and mounting position by
the standard. For example, GETYP/POS for Cereals harvesting front mounting will be 0111/001. The
NR bits indicate the number of times login message have been sent. This message should be sent three
times when an ECU logs in.

Figure 2: The format of system management messages.

The system management message has the general message format as shown in Figure 2. The bit group
VERW designates the specific system management function according to Table 2. The bit group
XXXX contains the dynamic user address. The remaining 16-bit group ADRESSBELEGVEKTO
signifies the address claim table. A logic 1 at a 16-bit position signifies that the address have already
been claimed, while a logic 0 means the address is free.

Table 2: DIN9684 system management functions
VERW System management function description
0000 Address claim message
0001 Alive handling message
0010 Address release message
0011 �Implement is disturbed� message
0100 Alive handling message of service
0101 Not allocated
0110 Not allocated
0111 �Service is disturbed� message
1000 Request to send implement descriptor
1001 �Send implement descriptor� message
1010 System stop message
1011 Implement stop message
1100 Implement status
1101 Not allocated
1110 Not allocated
1111 On/off message

 4

 Weed sensor (WS)VT

VT 2nd login

VT 3rd login

VT address claim

VT implement descriptor

VT 1st login

VT alive-handling

VT request implement descriptor

WS begin to login

1. WS 1st login

1. WS 2nd login

1.WS 3rd

2WS address claim

5.VT request
implement descriptor

3. WS implement descriptor

4. WS request implement
descriptor

7.VT responds
implement descriptor

6.WS respond implement
descriptor

VT first to login

��������

8.VT alive

 8. WS alive

��������

Figure 3: LBS network management
procedure

In the following section, we use an example to illustrate the
network management procedure for DIN9684, and later on we will
show how this network management is implemented using CAN
Kingdom. In this example, a virtual terminal (VT) first is connected
to CAN bus, then a weed sensor (WS) will log in. (Figure 3). The
following steps describe the interaction between the weed sensor and
the virtual terminal when the weed sensor logs in. The step numbers
are used to help description, however, they do not necessarily
represent timing sequence of the event. For example, step 3 may
occur before step 5 or after step 5 depending on the response time of
the VT and the weed sensor.

1.Weed sensor sends log in message three times with an interval of 1
second with NR bit of 1,2, and 3 respectively. (Figure 1)

2.Weed sensor listens to the bus until receiving another node�s alive-
handling message. From the second and third byte of the alive-
handling message, which contains address claim field, the weed
sensor selects its dynamic address from the free addresses in the
field. And it will send out an address claim message, with the XXXX
in the identifier filled by the selected address and the address claim
field updated (Figure 2).

3.Weed sensor sends out an implement descriptor message.

4.Weed sensor sends out a request implement descriptor message.

5.When the VT receives the address claim message, it will send out a
request implement descriptor message.

6.When the weed sensor receives request for implement descriptor
from other nodes, it will sends its implement descriptor for every
request. This will cause each node on the bus to send multiple
implement descriptors for each log on. Typically, each node sends its
implement descriptor equal to the number of nodes +1 times. From
these messages, the newly logged ECU builds its system monitor
table, which contains all the connected ECU�s dynamic addresses
and implement descriptors. The already logged ECUs (VT) will
update their monitor tables with the newly logged ECU (WS)
information.

7.The old ECUs (VT) also will respond the request for implement
descriptor from the newly logged ECU (WS).

8.At this time, the weed sensor has successfully login to the LBS
system. It needs to send an alive-handling message every second to
keep other nodes informed.

When a node wants to log out, it sends out an address release
message. All other ECUs will learn this information and updates
their system monitor tables. During normal system operation, a node
may send out other system management messages such as service
disturbed, implement disturbed, implement stopped, system
stopped, implement status, on/off, etc. if such a condition occurs.

 5

3. CAN Kingdom (CK) Protocol
CAN Kingdom (CK) was initially developed by Kvaser, Sweden, and CAN Kingdom International
(CKI) is the group responsible for CK. The corner stone behind the CK protocol is dividing tasks
between the system designer, who designs the king node, and the module designer, who designs the
city node. The city node running status, such as start, stop, silent etc., is controlled by the king node.
Furthermore, all message identifiers are assigned by the king node. Therefore, king administers all the
activities within the network, which is called �kingdom�. The module designer only takes care about
local issues within one module (city), while the system designer takes care about global issues within
the kingdom.

For an open system, like the DIN9684 system built in this project, the identifiers have already been
defined by the standard, and the node running status is not controlled by a central node. Therefore, the
role of the system designer is very limited and a king node does not need to exist physically. During
system startup procedure, city nodes can assume that there is a �virtual king�, and configure the node
status and message identifiers according to the open standard.

CK provides a set of primitives to address the common issues for CAN communication. These
primitives are organized into groups and each group can be associated with one CAN hardware
buffer. Before transmitting or after receiving a message from one buffer, the primitives can be called.
Thus, these primitives not only can be called from inside a node, it can also be triggered from an outer
node (such as the king) by receiving a message. In CK, a group of primitives is called a document,
which is defined as �a set of forms describing information carried in one Envelope (identifier)�. Each
document (group) can include a number of pages (primitives) multiplexed by a data byte in CAN
message. From the implementation point of view, a document is essentially a function to
encode/decode messages with the same identifier. One folder is associated with a unique identifier
and a unique document at any given moment. (Figure 3)

Figure 3: CK Post Office structure

There are four types of documents in CK specification: KingsDocument, MayorsDocument,
TimeHeraldDocument and BlockTransferDocument. A KingsDocument includes a set of primitives
(pages) to start/stop a city (Kings page 0, KP0), to assign an identifier to a folder (KP2), to place a
document into a folder (KP16), to setup a group (KP3), to remove a group (KP4), to setup an
action/reaction pair (KP5) etc. These primitives are usually triggered by receiving a message from the
king node. Therefore, the document containing these primitives is called KingsDocument. A
MayorsDocument provides city identification information upon request. A TimeHeraldDocument
provides a global clock for CAN network, and a BlcokTransferDocument defines how to transmit data
longer than 8 bytes.

After being familiar with notations of documents and pages, we can study what are the common
issues for any CAN network, and how CK primitives address these issues.

(1). Define message format and assign identifier
All CAN communication systems need to define the format and identifiers of messages. CK designs a
set of documentation format, including document list, form list, and form to specify message format
(Figure 6). For identifier assignment, CK designs KingsDocument Page 2 (KP2) to assign an
identifier to a folder dynamically (Figure 3).

(2). Decode a message

KP16 Document Folder Identifier KP2

 6

All CAN controllers need to parse CAN messages, and decide how to respond these messages. The
CK proposed a concept of document (and its relation with a folder) to decode a message.
Furthermore, KP16 is designed to place a document process into a folder (Figure 3).

(3). Transmit a message
 Basically there are three ways of transmitting a message:

• Transmit a message each time a node asks for (poll) it.
KP5 was designed to configure one transmit folder with a receiver folder. Whenever the

receiver folder receives the polling message, the associated transmit folder will respond with a
corresponding message.
• Transmit a message on a periodic basis.

KP11 and KP12 can work together to provide periodic transmission of messages. KP11 sets
up a circular time base, and KP12 sets up a repetition rate for a folder. This folder will be
transmitted each time the system clock advances by a set amount of time defined in KP12.
• Transmit a message each time an event occurs.

For event transmission, such as in the case of an alarm, a message needs to be sent out. In CK,
each node has an event array. Events are assigned to folders. If a folder event occurs, the
document process associated with this folder is called. This can be done by using KP5.

(4). Real time requirement
Most CAN communication systems are embedded real-time systems. Therefore most of them have
some real-time requirements. CK defines a global clock, which will time-stamp each sent-out message
or received message. Each message can be checked again the time requirements.

(5). Group nodes
Since CAN is a broadcasting system, every node receives CAN message at the same time. Sometimes,
we only want part of CAN nodes to respond to a CAN message. In this case, the group address can be
used to transmit such messages. KP3/ KP4 can add/remove a node to/from a group.

CK also has other primitives, such as start/stop node (KP0), assign base number (KP1), new city
physical address assignment (KP9), bit timing register setting (KP8), which are primarily used for CK
network management. Since the system we build is an open system, these primitives are not needed
and can be removed to save memory space.

4. Application of CK to developing a DIN9684 system
In this section, we discuss a weed sensor communication interface development in details and
describe how CK was used in the system. This development was based on CK primitives written by
US Navy Surface Targets Engineering Branch [Purdy, 2001], which includes KingsDocument,
MayorsDocument and TimeHeraldDocument.

The weed sensor system consists of a number of weed sensors and a touch screen terminal, which
accepts inputs from operator and displays results on the touch screen. The touch screen terminal is a
commercial product (AGCO DataTouchTM Terminal, AGCO, 2000). Data exchange with weed sensor
is through CAN bus according to the DIN9684 standard. The weed sensor was developed in a
previous project to identify weed from soil and crop (Wang, et al 2001). The weed sensor needs to be
calibrated before it can identify weed in fields. The calibration procedure involves training the sensor
with different subjects, including weed, soil and crop samples.

(1). Procedural approach to develop application modules
As in Figure 3, the relationships among documents, folders, and identifier are very important. The
core data structure in this relationship is the folder, which contains fields for identifier, data,
document name, event, an enable/disable flag, a direction flag, identifier extension flag, and a new
message flag. The folder data structure is statically mapped to the CAN hardware buffer. A mail
process function can be created to check the folder status. If there is a new message coming in (the

 7

CAN receiver interrupt sets the new message flag), or new message to be sent out, (the application
program sets the new message flag) the corresponding document process will be initiated. If the folder
is configured as transmitting, this process function typically will fill up the CAN data field. If it�s
configured as receive, the associated document process will typically decode CAN data field, and
modify appropriate variables shared with the application code. The mail process function can be
called at any time. Typically, it is called when the application is waiting for a message to come, or/and
called when a CAN message receive interrupt occurs.

A procedural approach to develop application codes can be designed as following:

a. Define the shared variable among the document process and the application code.
b. Define the document to process the incoming message and to modify the shared variable

accordingly in the document process code.
c. Using KP2 to assign an identifier to a folder and KP16 to place a document into a folder.
d. Write an application program. The application program only checks the shared variable

and decides program flow. Whenever a message needs to be sent, the application code
sets the new message flag in the folder. Whenever a message needs to be received, the
application code waits and checks the shared variable, which will be updated by the
received message.

Through this procedure, we convert the problem of communication to simply checking shared
variables between the document process and application code, which will significantly reduces
programming complexity, and make CAN communication simple.

 (2). LBS network management module
In this section, we describe how to use the above steps to develop application specific programs and
how CK primitive were used in the module design.

In DIN9684 network management, for messages transmitting out from one node, the identifier
consists of AGETYPOS as shown in Table 1. For a specific node, the GETY and POS are fixed.
Therefore, there are two types of transmitting messages: login and system function, which require two
transmit documents: LBSLogInDocument and LBSManagementTransmitDocument. For
LBSManagementTransmitDocument, there are 16 different system management functions, each
requiring a page for processing. This is implemented by using a switch-case statement in the
document process. For receiving messages, there are many possible identifiers. We can use a masked
folder to receive all the messages, and use the VERW value to differentiate processes. Although there
may be many different identifier messages for this folder, the message functions are all contained in
Table 2. Therefore, one receive document should be enough for all these messages.

We can apply the four-step procedure described above to implement LBS system management
functions as following:

a. Define the necessary shared variables between document and application code: e.g., the
number of login times for login document, etc.

b. Define 3 documents for LBS system management.
- LBSLogInDocument fills in login message according to DIN9684.
-LBSSystemManagementTransmitDocument transmits specific network management as
defined in Table 2.
-LBSSystemManagementReceiveDocument receives specific network management message
and decode them based on Table 2.

c. Use KP2 and KP16 to connect document to folder and folder to identifier. The transmitting
identifier is determined by implement type and position. The dynamic address is acquired
through selecting a free address from the address claim field of other node�s alive-handling
message. The receiving folder identifier is masked to receive all messages from different
ECUs.

d. Sequentially execute the network startup procedure described in Figure 3, and set the new
message flag if a message needs to be sent.

 8

Besides KP2 and KP16 were used in every document process, there are some other direct applications
of CK primitives in LBS network management module design to simplify implementation.

 (1). An alive handling message needs to be sent every second. Therefore it is a periodic transmission.
We can easily implement this by using KP11 and KP12. KP11 sets the circular time base to start a
clock. KP12 sets one CAN folder to LBSSystemManagementTransmitDocument, the page/form
number to 0 (alive-handling message), and the repetition rate to one second. Thus, the alive-handling
message will be transmitted every one second.

(2). For implementation descriptor request and response, we use Kings Page 5 to setup an
action/reaction pair between LBSSystemManagementReceiveDocument page 8 (receive request
implement descriptor) and LBSSystemManagementTransmitDocument page 9 (send implement
descriptor) .

(3). Weed sensor application document
The weed sensor exchanges message with the touch screen using target message types. Therefore, two
types of messages exist, and two documents need to be created: WeedSensorTransmitDocument and
WeedSensorReceiveDocument. However, we still need to differentiate the types of weed sensor
messages. This is done by WERT/INST field (3rd byte in CAN data field) in LBS target message.
(Figure 4) The PD/MOD/ZAEHLNUM/D bits are defined in LBS specification.

Figure 4: LBS target message format

All the weed sensor message types and their WERT/INST are shown in Table 3. In this table, WERT
indicates the row number and the INST indicate the column number; together they define an entry for
a message type. For example, WERT/INST =0000/0000 is defined as weed sensor setup message.

 9

Table 3: WERT/INST table for weed sensor.

Following the four steps in programming CAN interface, the WeedSensorTransmitDocument and
WeedSensorReceiveDocument can be easily designed. Each entry in Table 3 should have one case
(page) in the documents. For some entries, such as software version, and menu code size, are partner
messages to communicate with AGCO virtual terminal. Therefore, we create
WeedSensorPartnerTransmitDocument, and WeedSensorPartnerReceiveDocument to deal with them.
The programs basically share the same structure and only differ in identifier assignment. The
application program and the document process exchange information through shared variable.

(3). Other document
For our application, we need to upload weed sensor menu program from the weed sensor to the virtual
terminal. The terminal uses ISO11783 transport protocol, (ISO11783, part 2) which is not compatible
with the CK transport document. Therefore, we built a transport document to transmit menu code.
Again this is easily implemented by using the above-mentioned procedure.

(4) Consistent documentation
Another advantage of CK is that it specified a consistent and systematic method for documentation:
document, documents list, form, form list, etc. Following these conventions, the program is very easy
to describe. The weed sensor system documentation based on CK is shown in Table 4, 5 and Figure 5.

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 Setup Start
train

Pause Resume Stop Sample
Count

Detection
result

Began
Test Basic

sw
version

Menu
Sw
version

Menu
size

0001
0010
0011 Speed
0100
0101
0110
0111
1000 Worked

Area
1001 Operating

Time Effective
time

1010
1011
1100
1101
1110 Error

alarm
1111 Impl type Mfg.

ID Software
Version

 10

Table 4: Transmit document list

Table 5: Receive document list

For each page, CK defines a format to design the message content. One example is shown in Figure 5.
(LBSSystemManagementTransmitDocument page 9, send implement descriptor).

Transmit_Document_List0
Document RTR Description Fixed Folder

number
0 Yes Mayors_Document 1
1 Yes TimeHeraldSendDocument No
2 No LBSSystemLoginTransmitDocument No
3 No LBSSystemManagementTransmitDocument No
4 No WeedSensorTransmitDocument No
5 No WeedSensorPartnerTransmitDocument No
6 No TransportProtocolTransmitDocument No

Receive_Document_List0
Document RTR Description Fixed Folder number
0 No Kings_Document 0
1 No TimeHeraldReceiveDocument No
2 No WeedSensorReceiveDocument No
3 No WeedSensorPartnerReceiveDocument No
4 No TransportProtocolReceiveDocument No

 11

Figure 5: CK form format (to decode a page)

Document name:

Page Description.

Page Number: 9
Number of Lines: 8

Page Description: Send implement descriptor
LBS System management page

Line description.

Line 0: 1001xxxx Reserved by LBS xxxx: LBS dynamic
 address

Line 1: 00000000 Reserved by LBS

Line 2: 00000000 unused.

Line 3: 00000000 unused

Line 4: xxxxxxxx Implement descriptor, MSB

Line 5: xxxxxxxx Implement descriptor

Line 6: xxxxxxxx Implement descriptor

Line 7: xxxxxxxx Implement descriptor, LSB

Document name: LBS System Management Transmit
Document List: 0
Document Number: 3
Document Type: Transmit

 12

5. Performance Evaluation
For a real-time embedded system, the primary criteria to evaluate the system are timing requirement
and memory requirement (including RAM, ROM, etc.)

(1). Timing analysis
All the messages in the system use 11-bit identifier (CAN 2.0A) and most data load are 8-byte long. A
standard CAN message with 8 bytes of data have a max length of 134 bits including intermission
space and bit stuffing. At a baud rate of 125K/second, this allows the maximum transmission of about
1000 CAN messages in one second. In our system, implementation of folder scheduler (proc_mail)
took roughly 20 microseconds, which allows receiving up to 10,000 packets of information in one
second. (Purdy, 2001) Therefore, if the CPU is not overloaded by the application program, the system
is fast enough to handle all the CAN messages.

The system we designed consists of a Virtual Terminal, a spray controller, a radar speed sensor, a
GPS receiver, and two weed sensors. The periodic messages and their characteristics are listed in
Table 6. During system startup, there are also some aperiodic messages, such as login, address claim,
implement menu information exchange, and calibration command, etc. Because frequencies of these
messages are very low, they do not contribute too much to busload. Thus, we only need to analyze the
busload during normal operations. For the same reason, we do not consider the bus disturbing and
error-reporting message.

Table 6 shows there are 30 messages occurring in the CAN bus during one second period, which
accounts for about 30/1000 = 3% of CAN bus load. Although a complete response time analysis is
required to analyze all the message against their deadlines (which is beyond the scope of this paper),
obviously the CAN bus is far from full load, and many more implement controllers can be connected
to the CAN bus without causing loading problem.

Table 6. Overview of the periodic message characteristics

(2). Memory requirement

Name of the sending participant
and names of the generated
messages

Name of the receiving
participant

Frequency (Hz)

Virtual terminal
Alive handling All 1
Data and time All 1
Service alive All 1
Weed Sensor 1
Alive handling All 1
Detection result Spray controller and VT 10
Weed Sensor 2
Alive handling All 1
Detection result Spray controller and VT 10
Spray Controller
Alive handling All 1
GPS receiver
Alive handling All 1
Position All 1
Speed All 1
Data and Time All 1

Total 30

 13

From compiled codes, it�s easy to obtain the ROM requirement for the weed sensor implementation.
Because code size depends on many factors including compiler setting, user programming style, etc.
Comparison of code size should be made using the similar criteria. Table 7 and Figure 6 shows the
code size for the weed sensor program by using CAN Kingdom. In previous research (Wei, et al,
2001), we implemented a weed sensor program by using a proprietary protocol. Table 8 shows the
code size for the weed sensor implementation without using CAN Kingdom. From Table 7 and
Figure 6, the kernel of CAN Kingdom (including KingsDocument, Mayors Document,
TimeDocument, CAN driver, etc.) only amounts to about 13.1K bytes (compiler without
optimization) and 8.6K bytes (compiler with optimization for size) memory requirement. The
application part of codes uses about 11.3K(compiler without optimization) and 9.2K(compiler
optimization for size). From Table 8, the code size for the weed sensor implementation without using
CAN Kingdom is 12.2K (compiler no optimization) and 9.8K(compiler optimization for size). The
use of CAN Kingdom did increase the memory requirement slightly. This is the cost we had to pay to
receive benefits in implementation and documentation.

Because CAN Kingdom is only a set of primitive, it does not require more RAM, thus integrating
CAN Kingdom to application would not significantly increase the RAM requirement.

Table 7: Code size for the weed sensor by using CAN Kingdom

Code size (byte) Function modules

File name Label
No
optimization

Optimization
for size

KingsDocument and Mayors Document Kingspage.c A 4.7K 3.4K
Timing related document Timing.c B 2.9K 2.3K
CAN driver CANlib.c C 2.9K 1.8K
CK basic services, including document,
form, parameter generation, search, etc.

Citydoc.c D 1.2K 0.9K

Mail Process Postoff.c E 0.9K 0.6K
CK initialization Mayor.c F 0.5K 0.5K
Sub total G 13.1K 8.6K

LBS management document Lbs.c H 0.7K 0.5K
Transport document Transport.c I 1.0K 0.7K
Weed sensor document Weed.c J 1.7K 1.3K
Weed sensor application (algorithm,
menu processing, etc.)

Da.c K 7.9K 6.7K

Sub total L 11.3K 9.2K

Table 8: Code size for the weed sensor without using CAN Kingdom

Code size (byte) Implementation part
No Optimization Optimization for size

Weed sensor application 11.1K 8.78K
CAN library (Infineon CAN driver library) 1.1K 1.1K

 14

0

2

4

6

8

10

12

14

A B C D E F G H I J K L

function modules

C
o

d
e

si
ze

 (
K

 b
yt

es
)

 Compiler no optimization

Compiler optimization for
code size

Note: Function modules are listed in Table 7.
Figure 6: Code size for the weed sensor implementation by using CAN Kingdom

5.Discussions

A CK project is organized like a tree, with CK project being the root, documents being its branches.
Each branch can have many leafs (pages). From this tree, not only can we see the complete picture of
the system, we also can easily trace the details of a specific function (a certain page). In addition, this
tree structure makes CK system documentation very easy to understand. Figure 7 is a general
structure of the CK system.

KP0

CK project

Kings
Document

Mayors
document

ISO11783
documents

KP1 KPn.
�

� � ��
�

Figure 7: CK program structure

LBS
document

Weed
sensor

 15

While the KingsDocument is used in every CK city, ISO11783 documents or LBS documents can
only be used in agricultural machinery electronics for communication. Thus, CK provides a platform
for organizing programs and code sharing.

In CK specifications, the default identifier for the KingsDocument is 0. In LBS system, however, the
0 identifier was used for other purposes. Therefore, KingsDocument identifier has been shifted to
other numbers to avoid unnecessary confusion. If a king node is not physically present in the system,
there is no need to connect these primitive documents to the folder. In this case, KingsDocument and
MayorsDocument will no longer be a document, but a purely �function call�. However, we leave
these documents associated with folder 0, and 1, respectively. This arrangement would allow the city
node to be dynamically configured for use with other open or proprietary systems, although the node
is default to be used in LBS system.

In CK specifications, there is also a start-up procedure, which is not needed for an open system.
However, we can follow this procedure for compatibility and then start the LBS network management
procedure. Again, this allows the node to be used in both LBS and other systems.

In CK specifications, KP12 configures a folder for periodic transmission of a message. However, it
doesn�t specify the page number in this document to be transmitted. In
LBSSystemManagementTransmitDocument, however, the alive-handling message is only a case/page
of this document. Therefore, we need to somehow denote the page number in KP12 message. This can
be done by modifying KP12 second byte in the message. The original design for KP12 in line 2 is the
folder number. Since most CAN controllers only have less than or equal to 16 buffers, we can use the
lower 4 bits of the second byte as folder number and the upper 4 bits as page number. This approach
works well for LBSSystemManagementTransmitDocument, since it has only 16 maximum entries in
Table 2.

Although CK has provided many advantages, integrating CAN Kingdom kernel to application codes
did increase the code size by about 10K bytes. Furthermore, studying and applying CK to system
design is a time-consuming task. In the long run, however, this overhead will become negligible.

6.Conclusions

CAN kingdom provides a systematic method to design CAN-based systems. In this paper, we present
a weed sensor system, which demonstrated many benefits in designing a DIN9684 network using CK
primitives and conventions, although CK is not specially designed for open systems.

(1). CK provides a set of primitive for CAN communication, which can significantly reduce the
complexity in implementation.

(2). CK provides a platform, upon which other domain-specific primitives, such as the DIN9684
library and the ISO11783 library, can be built. For example, the LBSSystemManagementDocument
developed in this project can be used in other ECU nodes that connect to a DIN9684 bus. These
libraries will avoid repetitive development and improve software module reuse. Furthermore, CK
primitives are scalable and modular, which can adapt to different application environments. This is an
important feature for embedded system where both processing power and memory are very limited.

(3). CK provides a structural, four-step approach for module design:

a. Define the shared variable between communication document and application program
b. Define the document to process the incoming message and modify the shared variable

accordingly.
c. Use KP2 and KP16 to connect the defined document with an identifier and a folder

number
d. Write the application program.

 16

If these steps are followed, programming CAN interface would become a less difficult task.

Acknowledgment
The authors highly appreciate the assistance from Dave Murray of AGCO, David Purdy of US Navy
Seaborne Target Project, Joel Morton of Dickey-John, and Lars-Berno Fredriksson of Kvaser.

7.References

Auernhammer H., S. Dielktronische. 1993. In: Landwirtschaftliches BUS-System �LBS, Proceedings
of the Congress, 30 November 1993, Frankfurt/Main (Auerhnhammer H;Frisch J eds) pp18-30, KTBL
Arbeitspapier 196.

Bosch. 1991. CAN specification 2.0B.

Fredriksson, L. 1996. A CAN Kingdom, Rev 3.01, Kvaser AB.

Leen G, D. Heffernan , A. Dunne. 1999. �Digital networks in the automotive vehicle�; IEE
Computing & Control Engineering Journal, December 1999, pp257 � 266

ISO (International Organization of Standard). 1993. Road vehicles -- Interchange of digital
information -- Controller area network (CAN) for high-speed communication

ISO (International Organization of Standard). 1994. Road vehicles -- Low-speed serial data
communication -- Part 2: Low-speed controller area network (CAN)

ISO (Internal Organization of Standard). 2001. ISO11783: Tractors and machinery for agriculture and
forestry �serial control and communications data network

BUS-Schnittstellie. 1998. LBS, DIN9684, The mobile Agricultural BUS.

Purdy, D. 2000. CK programming lab.

Purdy, D. 2001. Personal Communication.

SAE. 1996. J1939: recommended practice for serial control and communications vehicle network.

NMEA 2000, Standard for serial-data networking of marine electronic devices.

Wei, J., N. Zhang, N. Wang, D. Oard, Q. Stoll, D. Lenhert, M. Neilsen,M. Mizuno,G. Singh. 2001.
Design of an Embedded Weed-Control System Using Controller Area Network (CAN). ASAE Paper
No. 013033

